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The behavior of a modified Jaynes-Cummings Hamiltonian model (two-level atom in
interaction with an electromagnetic field) in the presence of degenerate parametric
amplification is introduced. We have examined two different cases, one when the field
frequency ω is not equal to the splitting photon frequency ε for which the off-resonance
case is considered. In the second case we have taken each frequencies to be equal
(ω = ε) and considered the system to be at exact resonance. The wave function for
both cases is obtained and the result used to calculate the density matrix from which
we manage to discuss the field entropy as well as the phase entropy. It is shown that the
system is sensitive to any change in the splitting photon frequency ε.
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1. INTRODUCTION

It is well known that the field of quantum mechanics gives rise to the notion of
entangled states as a resultant of the superposition principle as well as the structure
of the Hilbert space. Entangled states are states of two or more systems correlated
with each other, but without classical features. In fact quantum entanglement is
one of the most striking features of quantum mechanics (Bell, 1965; Einstein
et al., 1935). The recent surge of interest and progress in quantum information
theory allows one to take a more positive view of entanglement and regard it
as an essential resource for many ingenious applications such as quantum dense
coding (Bennett and Wiesner, 1992), quantum teleportation (Bennett et al., 1994),
and quantum cryptography (Ekert, 1991). More complex entanglement manipula-
tions could be used for quantum error correction (Steane, 1996) or entanglement
purification (Van Enk et al., 1997).
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On the other hand one can see that the preparation of complex entangled
states under well-controlled conditions is the subject of intense experimental
activity (Greenberger et al., 1990). The manipulation of these states that have
nonclassical and nonlocal properties leads to a better understanding of basic quan-
tum phenomena. The manipulation of controlled entangled states, protected from
their environment, is experimentally challenging. More precisely entanglement be-
tween individual systems has been achieved so far in quantum optics systems e.g.
in photon down-conversion processes (Pan et al., 2000), with trapped ions (Sackett
et al., 2000) or in cavity quantum electrodynamics (QED) (Rauschenbeutel et al.,
2000).

The entanglement in the last case results from the interaction of a two-level
atom with a cavity field mode. With circular Rydberg atoms and superconducting
cavities, the coherent atom-field coupling overwhelms dissipation (Haroche and
Raimond, 1994), where the basic interaction process is the vacuum Rabi oscillation
(Brune et al., 1996). This indicates that the cavity (QED) system is an almost
ideal system to generate entangled states and to perform small scale quantum
information processing (Raimond et al., 2001). This stimulated and encouraged
us to turn our attention to the Jaynes-Cummings model (JC) which represents
such type of the interaction (Jaynes and Cummings, 1963; Rauschenbeutel et al.,
1999).

The main purpose of the present paper is to examine the (JC) model, however,
in the presence of a second harmonic generation process by the same cavity field
(namely degenerate parametric amplification) (Abdalla et al., 2005). Specifically
we examine two main quantum aspects of the suggested model: Quantum field
entropy as well as phase entropy. The model we adopt here is given by

Ĥ

h̄
= ωâ†â + ξ (t)â†2 + ξ ∗(t)â2 + ω0

2
σ̂z + λ(â† + â)(σ̂− + σ̂+), (1)

where â† and â are the creation and annihilation operators for the cavity mode such
that [â, â†] = 1, and ω and ω0 are the field and the atomic transition frequencies
respectively, while λ is the coupling constant between the field and the atom. The
operators σ+(σ−), and σz are the usual raising (lowering) and inversion operators
for the two-level atomic system, satisfying [σz, σ±] = ±2σ± and [σ+, σ−] = σz.
The time-dependent complex function ξ (t) is a response of the second harmonic
generation (degenerate parametric amplifier) and is given by

ξ (t) = ik

2
exp(−2iεt) (2)

where k is an arbitrary constant and ε is the frequency of the split photon. It
should be noted that the existance of the second harmonic generation term in the
Hamiltonian (1) may reflect appreciable fluctuations in the strength of the cavity
field, which may arise in a number of ways, for instance from external signals,
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from noise operators or maybe from other internal reactive effects. In the meantime
the simplest and most illuminating example of a change in the field intensity is
the case of damping; for instance, the field simply leaks away through the walls
of the cavity. This means that for a realization of this model the interaction time
tint (say) should be such that tint � κ−1, where κ is the rate of leakage of the field
out of the cavity. Cavities with high enough Q = ω/κ factor can guarantee that
this condition is fulfilled. Further the time of interaction should be much shorter
than the time scale of spontaneous decay, but however long enough to allow for
appreciable exchange of energy between the atom and the field and between the
field modes, i.e λ−1, k−1 � tint � γ −1, κ−1 where γ is the spontaneous decay
rate. For more discussion see Puri (2001).

The organization of the paper is as follows: In Section II we derive the wave
equation from which we are able to obtain the density matrix, however, for two
different cases. The first case when the frequency of the split photon is not equal to
the field frequency, while the second case is for when both frequencies are equal.
Section III is devoted to the quantum field entropy and is followed by Section IV
where we consider the phase entropy. Finally our conclusion is given in section V.

2. THE DENSITY MATRIX

To study the dynamics of the system we have to obtain the exact expression
of the time-dependent wave function in the schrödinger picture. In this context
we consider the case in which the split photon frequency ε is equal to the field
frequency ω. However, we shall start with the case in which ω �= ε.

Case I. (ω �= ε)

To deal with this case we introduce the scaled time-dependent operators

Â = â exp(iεt), and Â† = â† exp(−iεt). (3)

Thus, if we substitute Eq. (3) into the Hamiltonian (1), taking care with the
generating function, then we have

Ĥ

h̄
=

[
δÂ†Â + i

k

2
(Â†2 − Â2)

]
+ ω0

2
σ̂z + λ(Â exp(−iεt)

+ Â† exp(iεt))(σ̂− + σ̂+). (4)

where δ = (ω − ε) and ω �= ε. Moreover, if we invoke the canonical transforma-
tion (Abdalla et al., 2005)

Â† = B̂† cosh φ + iB̂ sinh φ, Â = B̂ cosh φ − iB̂† sinh φ, (5)
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where B̂ and B̂† satisfy the commutator [B̂, B̂†] = 1, then Eq. (4) becomes

Ĥ

h̄
= 
B̂†B̂ + ω0

2
σ̂z + λ[(B̂ cosh φ − iB̂† sinh φ) exp(−iεt)

+ (B̂† cosh φ + iB̂ sinh φ) exp(iεt)](σ̂− + σ̂+), (6)

where

φ = 1

2
tanh−1(k/δ), 
 =

√
δ2 − k2. (7)

In the interaction picture the Hamiltonian (6) is given by

V I (t)

h̄
= λ{B̂(e−iεt cosh φ + i sinh φeiεt )e−i
t

+ B̂†(eiεt cosh φ − i sinh φe−iεt )ei
t }(σ̂−e−iω0t + σ̂+eiω0t ). (8)

Now, if we apply the rotating wave approximation (RWA), for which we neglect
the energy nonconserving terms B̂σ̂− and B̂†σ̂+, then Eq. (8) reduces to

V I (t) = h̄λ[B̂†σ̂−J (t) + B̂σ̂+J ∗(t)], (9)

where

J (t) exp[−i
t] = cosh φ exp[−i(ω0 − ε)t] − i sinh φ exp[−i(ω0 + ε)t]. (10)

It should be noted that to avoid any appearance of nonconservative terms we
have applied the RWA to the rotated operators B̂(B̂†) not to the physical opera-
tors Â(Â†). Further the rapidly oscillating terms, exp[±i(ω0 + ε)t], are neglected
within the RWA and then the interaction Hamiltonian (9) takes the form,

V I (t)

h̄
= λ cosh φ{B̂†σ̂− exp[−i(ω0 − ε)t] exp[i
t]

+ B̂σ̂+ exp[i(ω0 − ε)t] exp[−i
t]}. (11)

Note that the transformed Hamiltonian (11) is a JC form of interaction attained
by RWA, but with the canonically transformed field operators B̂, B̂†.

The continuous map E∗
t describing the time evolution between the atom and

the field is defined by the unitary operator generated by Ĥ such that

E∗
t : SA −→ SA ⊗ SF ,

E∗
t ρ = Ût (ρA(0) ⊗ ρF (0))Û ∗

t , (12)

Ût ≡ exp

(
−1

h̄

∫ t

0
Ĥ (t̀)dt̀

)
.
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Bearing these facts in mind we find that the evolution operator Ût takes the
following from

Ût =
[

Ûee Ûeg

Ûge Ûgg

]
, (13)

where Ûij is the single element matrix in the atomic subsystem basis, where |e〉
and (|g〉) are the excited and the ground states of the atom respectively has the
expressions

Ûee = exp

[
− i(� − 
)t

2

] (
cos gnt + i

(� − 
)

2gn

sin gnt

)
,

Ûeg = −ig̃ exp

[
− i(� − 
)t

2

] (√
n + 1

sin gnt

gn

)
, (14)

Ûgg = exp

[
− i(� − 
)t

2

] (
cos gn−1t + i

(� − 
)

2gn−1
sin gn−1t

)
,

and Ûge is its Hermitian conjugate. Finally the factor gn is the Rabi frequency
given by

gn =
√

g̃2(n + 1) + 1

4
(� − 
)2, g̃ = λ cosh φ, � = ω0 − ε. (15)

It must be born in mind that the photon number n appearing in gn must be
treated as an operator. It should be noted that the second harmonic generation in
this case has two effects: changing the Rabi vacuum frequency by a factor cosh φ

and adding to the detuning parameter.

Case II. (ω = ε)

In order to consider the case in which ω = ε, one may think of the limiting
case. However, this is not the proper way to do so. This can be noted from the
inconsistency which would appear as a consequence of the singularity in Eq. (7).
Now, if we δ = 0, we can rewrite the Hamiltonian (1) in the form

Ĥ

h̄
= ωâ†â + ξ (t)â†2 + ξ ∗(t)â2 + ω0

2
σ̂z + λ(â† + â)(â− + σ̂+), (16)

where

ξ (t) = ik

2
exp(−2iωt). (17)



642 Abdalla, Abdel-Aty, and Obada

We follow the same procedure as before and define new time-dependent operators
Â1 and Â

†
1 such that

Â1 = â exp(iωt) and Â
†
1 = â† exp(−iωt) (18)

Then Eq. (16) takes the form

Ĥ

h̄
= ω0

2
σ̂z + λ

(
Â1σ̂+ exp(−iωt) + Â

†
1σ̂− exp(iωt)

) + i
k

2

(
Â

†2
1 + Â2

1

)
. (19)

In terms of the interaction picture we have

V I (t)

h̄
= λ{[Â1 cosh kt + Â

†
1 sinh kt]σ̂+ exp(−i�t)

+ [Â†
1 cosh kt + Â1 sinh kt]σ̂− exp(i�t)}, (20)

where � = (ω0 − ω) is the detuning parameter. Here we point out that as a result
of the degenerate parametric amplifier terms the interaction Hamiltonian acquires
rapid oscillating terms which we ignore within the RWA. Hence Eq. (20) reduces
to

V I (t)

h̄
= λ cosh kt

(
Â1σ̂+ exp(−i�t) + Â

†
1σ̂− exp(i�t)

)
, (21)

Now using Eqs. (12), (13) and Eq. (21), we get when � is zero:

Ût =
[

Ûee Ûeg

Ûge Ûgg

]
, (22)

where the Ûij are given by

Ûee = I0(ḡ) + 2
∞∑

r=1
(−)r I2r (ḡ) cosh(2rkt),

Ûeg = −2i

( ∞∑
r=0

(−)r I(2r+1)(ḡ) sinh[(2r + 1]kt)

)
,

Ûgg =
(

I0(ḡ) + 2
∞∑

r=1
(−)r I2r (ḡ) cosh(2rkt)

)
,

(23)

where ḡ = (λ/k) × √
n + 1 is the modified Rabi frequency and In(·) is the modi-

fied Bessel function of order n. We may note here the formal difference between
the two expressions in (14) and (23). The dependence on the parameter k appears
in the argument of the modified Bessels functions as well as the time dependent
hyperbolic functions. In the following sections we use the density matrix obtained
here to discuss the effect of the second harmonic generation term on the JC model
and to see that change would occur in both of field and phase entropies.
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3. QUANTUM FIELD ENTROPY

As we have previously mentioned, quantum entanglement has become a
subject for intensive study among those interested in the foundations of quantum
theory, see for example (Nielsen and Chuang, 2000). Since the quantum dynamics
described by the Hamiltonian (1) leads to an entanglement between the field and
the atom, therefore in the next section of the present paper we use the field entropy
as a measure for the degree of entanglement between the fields and the atom of
the system under consideration. To achieve this goal we firstly define the system
entropy as

Ŝ = −Tr{ρ̂ ln ρ̂}, (24)

where ρ̂ is the density operator for a given quantum system. It should be noted
that Boltzmann’s constant, K has been taken equal to unity. If the density matrix
ρ̂ describes a pure state, then Ŝ = 0. However, if ρ̂ describes a mixed state, then
Ŝ �= 0, but according to the Araki-Lieb Theorem (Araki and Lieb, 1970) a system
(the entropy of which is Ŝ) consisting of two subsystem (the entropies of which
are ŜA and ŜF ), these entropies satisfy the inequalities |ŜA − ŜF | ≤ Ŝ ≤ ŜA + ŜF .
Now suppose the field and the atom are treated as a separate system. Then the
entropy can be defined through the corresponding reduced density operators by

ŜA(F ) = −TrA(F ){ρ̂A(F ) ln ρ̂A(F )}, (25)

provided we treat both atom and field separately. The density matrix ρ̂A(F )(t) in
the above equation is given by

ρ̂A(F )(t) = TrF (A)|ψ(t)〉〈ψ(t)|, (26)

where we have used the subscript A(F ) to denote the atom (field) respectively. We
should note here that, if the atom-field system is initially in a pure state, then at
any time t > 0, the entropies of the field and the atomic subsystems are precisely
equal (Araki and Lieb, 1970; Phoenix and Knight, 1988, 1991a,b).

To this end if we consider that the initial state of the atom takes the following
form

ρ̂A(0) = |ψA(0)〉〈ψA(0)|, (27)

where

|ψA(0)〉 = [cos θ |e〉 + eiφ sin θ |g〉]. (28)

Furthermore we suppose that the initial state of the field is given by ρ̂F (0) =
|� 〉〈� |, where |� 〉 = ∑∞

n=0, pn|n〉 and p2
n = |〈� |n〉|2 being the probability dis-

tribution of photon number for the initial state. Thus from Eq. (13) the reduced
field density operator takes the form

ρ̂F (t) = |C(t)〉〈C(t)| + |S(t)〉〈S(t)|, (29)
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where

|C(t)| =
∞∑

n=0

pn(Ûee cos θ + eiφÛeg sin θ )|n〉,

|S(t)| =
∞∑
n

pn(Ûge cos θ + eiφÛgg sin θ )|n〉. (30)

In order to derive a computational formalism of the field entropy, we must obtain
the eigenstates and corresponding eigenvalues of the reduced field density operator.
A general method has been developed to calculate the various field eigenstates in
a simple way, see Phoenix and Knight (1988, 1991a,b). By using this method we
obtain the eigenvalues and eigenstates of the reduced density operator,

λ±
f (t) = 〈C(t)|C(t)〉 ± exp[∓�]|〈C(t)|S(t)〉|

= 〈S(t)|S(t)〉 ± exp[±�]|〈C(t)|S(t)〉|,

|ψ±
f (t)〉 = 1√

2λ±
f (t) cosh(�)

{exp[(iϑ

± �)/2]C(t)〉 ± exp[−(iϑ ± �)/2]|S(t)〉}, (31)

where

� = sinh−1

( 〈C(t)|C(t)〉 − 〈S(t)|S(t)〉
2|〈C(t)|S(t)〉|

)
, (32)

and 〈C(t)|S(t)〉 = |〈C(t)|S(t)〉| exp(iϑ). We can express the field entropy SF (t) in
terms of the eigenvalue λ±

f (t) of the reduced field density operator,

ŜF (t) = −λ+
f (t) ln(λ+

f (t)) − λ−
f (t) ln(λ−

f (t)). (33)

In the case of a disentangled pure joint state ŜF (t) is zero and for maximally
entangled states it gives ln 2. To see the effect of the second harmonic generation
(degenerate parametric amplifier) on the JC model we have plotted the time
evolution of the quantum field entropy against the scaled time λt for the two
above mentioned cases. In Fig. (1) we have considered the case in which the
field frequency ω does not match the split frequency ε for n̄ = 20, but with
different values of the other parameters. For example in Fig. 1(a) we have taken
δ = 0.7λ, k = 0.5λ, and the detuning parameter � = 0, while the atom is in its
excited state θ = 0. This means that tanh 2φ = 0.7 and ω = 0.5λ. In this case we
realize that the maximum value of entanglement is achieved after short period of
time (∼ 0.65) more precisely after onset of the interaction. This is followed by a
period of time where we can see a decreasing in its value to reach its minimum
(∼ 0.05). However, the function starts again to increase showing collapses with
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Fig. 1. The time evolution of the quantum field entropy as a function of the scaled time λt

(Case I (ω �= ε)) for n̄ = 20, where (a) δ = 0.7λ, k = 0.5λ, θ = 0, and � = 0, (b) As (a) but
for intermediate atomic state, θ = π/3 (c) As (a) but δ = 5λ and (d) As (a) but � = 10λ.

rapid fluctuations, in the meantime we can observe a slight revival at the half
period of the time considered. Another period of decreasing is observed, where
the function reaches the value ∼ 0.3, and then it starts to increase its value again
with collapses and more rapid fluctuations. Thus the effect of the parameter k
here amounts to a slight prolongation of time revival the standard JCM and slight
lowering in the maximum value of entanglement due to the small detuning.

For the intermediate state case (θ = π/3), we observe different behavior of
the field entropy, as can be seen in Fig. 1(b). In this case after onset of the interaction
the function decreases in value quite drastically compared with the excited state
case. However as the time develops it starts again to increase in value (with rapid
fluctuations) and to reach its maximum at the end of the time considered which
is approximately ∼ 0.5. As soon as we take δ = 5λ which means tanh 2φ = 0.1
and ω = 5λ, the function in the excited state case increases its minimum to be just
above 0.25, while the maximum entanglement is slightly reduced, see Fig. 1(c).
This means that the interaction between the atom and the field gets stronger (in
certain period of time) compared with the case in which δ = 0.7λ. Consequently
we can say that the system is somehow sensitive to the change in the frequency of
the split photon.

Finally, when we take the effect of the detuning paremeter into account
� = 10λ, we can see that there is a decreases in the maximum value of the
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entropy with an increase in its minimum. Also there is a long period of revival
which refers to strong correlation between the field and the atom, see Fig. 1(d).

To continue our progress we discuss the effect of the degenerate parametric
amplifier on the JC model for the case in which ω = ε. For this reason we have
plotted as before in Fig. (2) the time evolution of the quantum field entropy against
the scaled time λt . We have considered the system in the excited state (θ = 0) and
take n̄ = 20 and � = 0, while k = 0.1λ. In this case the situation is quite different
compared with the previous case. This is due to the sensitivity of the system to
the variation that would occur in the the photon split frequency. For example, we
can realize that the function increases in value to reach the maximum, however,
at a time later than the case ω �= ε. This is followed by a period of decrease
where the function reduces its value after a period of time almost twice the ω = ε

case. Further we can see another period of time in which the function reaches its
maximum with rapid fluctuations and interference between the pattern showing
a long period of collapses, see Fig. 2(a). As soon as we increase the value of the
parameter k, such that k = 0.5λ, the function reaches its maximum after onset of
the interaction and then decreases in value to reach its minimum in period of time
much less than half of the period in the non-degenerate case of Fig 1(a). This is
followed by an increase in value again, where we can see a long period of rapid
fluctuations and interference between the pattern. This means that the system is
in strong interaction with maximum entanglement around (∼ 0.7), see Fig. 2(b).
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Fig. 2. As Fig. 1, but for Case II :(ω = ε), n̄ = 20, and for: (a) θ = � = 0, k = 0.1λ, (b) As
(a) but for k = 0.5λ, (c) As (a) but for θ = π/3, (d) As (a) but for θ = π/4.
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For the intermediate state case we have considered two cases: one at θ = π/3,
and the other at θ = π/4. In both cases the field entropy takes its maximum
immediately after onset of the interaction, and the general behavior is almost the
same. However, the period of collapse is different for we can see that the period
of revival for the case θ = π/4 is longer than the case of θ = π/3. Moreover the
function at θ = π/3 has more fluctuations than the other case, see Figs. 2(c,d). It is
to be mentioned that strong entanglement persists after the onset of interaction for
longer periods in contrast to the case of the non-degenerate interaction considered
earlier. This may be compared with the results given by Phoenix and Knight
(1988, 1991a,b), where this phenomenon is absent from their model since they
considered the JCM with one and two photon processes. Furthermore for the case
in which ω �= ε we observe that there is a reduction in the value of the maximum
entanglement (for the same value of parameters, as well the time of consideration)
compared to the earlier case considered in this reference. Thus we can conclude
that the addition of the second harmonic generation certainly leads to appreciable
modifications in the degree of entanglement.

4. PHASE ENTROPY

The main purpose of this section is to discuss the effect of the second harmonic
generation on the JC model through the behavior of the phase entropy. For the
phase description there are different techniques to deal with it. Some of them are
based on a Hermitian quantum phase operator or associated with quasiprobability
distribution functions in a phase space. However, one can find that the approach
which is based on operational definition of quantum phase is more convenient.
Therefore in the present paper we use the Shannon entropy associated with the
phase probability distribution Pα , which is given by

Pα = 〈α|ρ̂(t)|α〉, (34)

where |α〉 is the phase state and ρ̂ is the density matrix. The Shannon entropy
for the density operator given by the above equation is (Bialynicki-Birula and
Mycielski, 1975; Deutsch, 1983; Maassen and Uffink, 1988)

Rψ = −
∫
2π

(Pα ln Pα) dα. (35)

The single-mode of the Pegg-Barnett phase formalism which of interest in the
field of quantum optics can be constructed from the single-mode phases (Obada
et al., 1998; Pegg and Barnett, 1989) to take the form

P (α, t) = lim
s→∞

(
s + 1

2π

)
〈αm|ρ̂(t)|αm〉, (36)
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where |αm〉 is a phase state of the mode and given by

|αm〉 = 1√
(s + 1)

s∑
n=0

einαm |n〉, (37)

and αm = α◦ + 2πm
s+1 with m = 0, 1, . . . , s, and α◦ arbitrary. Eq. (37) defines a

particular basis set of (s + 1) mutually orthogonal phase states. Using the standard
procedure, the phase probability distribution, and the expectation value as well as
the variance of the Hermitian phase operator may be obtained for the field. Since
the coherent field at t = 0 belongs to a class of partial phase states, therefore
we have chosen the reference phase α0 as α0 = β − πs

s+1 and introduced the new
phase labels ζ = m − 1

2 s where m = 0, 1, 2, . . . , s. Then, as s tends to infinity,
the summation may be transformed into an integral after replacing 2πζ

s+1 by α and
2π
s+1 by dα. This leads to continuous phase probability distribution, where

P (α, t) = 1

2π

∞∑
n=0

∞∑
m=0

(ρ̂(t))nm exp[iα(n − m)] , (38)

which is normalized according to∫ π

−π

P (α, t) dα = 1. (39)

Now we discuss the behavior of the Pegg-Barnett phase for the present system.
For this reason we have plotted Figs. 3(a) and (3b). The first figure describes the
case in which the split frequency ε does not equal the field frequency ω, where we
have taken into consideration the system in the excited state and the mean photon
number n̄ = 20. In the meantime we have kept the value of the other parameters

Fig. 3. P (α, t) against α and the scaled time λt . The mean photon number is fixed for all cases,
such that n̄ = 20. (a) case I (ω �= ε) with the same parameters as in Fig. (1a) and (b) case II (ω = ε)
with the same parameters as in Fig. 2(a).
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Fig. 4. Phase entropy as a function of the scaled time λt . The mean photon number is fixed for
all cases, such that n = 20. (a) case I ω �= ε with the same parameters as in Fig. 1a and (b) case
II (ω = ε) with the same parameters as in Fig. 2(a).

of Fig. 1(a) unchanged. If we consider the variation of θ as −π ≤ θ ≤ π , in this
case we realize at t = 0 (corresponding to the initial coherent state) the phase
distribution, P (α, t), starts with a single-peak structure at θ = 0 and as the time
develops, the peaks splits into two diverging peaks until they reach the boundary
at ±π . As time increases the two peaks move onward converging until they meet
at θ = 0. Increasing the time by a further amount leads to breaking of the peak
structure to multipeak and diffusion. For the second case for which ω = ε, we
have taken the same values as before of the parameters considered. In this case
we realize that although the single peak structure persists for some time before it
breaks into two diverging peaks. These two peaks meet the borders ±π at the half
of the revival time, but after that they converge again with an increased velocity
to the point θ = 0. After that the phase diffuses and multipeaks are observed.

The phase entropy depicted in Fig. 4(a) for the non-degenerate case shows
collapses and revivals of the entanglement with fluctuations around the revival
time and a higher degree of entanglement between the times of revivals. However,
for the degenerate case the phase entropy shows an increase in its value to its
maximum after a short time from the onset of the interaction. Then a time of
persistence of the stronger entanglement is followed by fluctuations. It is to be
remarked that the phase entropy behavior exhibits the main features exposed by
the phase distribution, where fluctuations in the entropy occur during the diffusion
of the phase as can be seen from Figs. (3) and (4).

5. CONCLUSION

In this paper we have introduced a modified Jaynes-Cummings model to
include the effect of the second order harmonic generation (degenerate parametric
amplifier). We have handled two different cases for the present model: The first
when the field frequency ω is not equal to the split photon frequency ε, where the
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canonical transformation is invoked to obtain the wave function in the Schrödinger
picture for the off-resonance case. In the second case considered both frequen-
cies are equal and therefore the wave function is obtained at exact resonance.
The density matrix elements have been calculated by using the exact expression
of the wave function for each case separately. The degree of entanglement is
discussed through the field entropy. Also we have considered the phase entropy.
We have shown that both of field and phase entropies are sensitive for any change
in the splitting photon frequency ε.
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